Journal of Applied & Environmental Microbiology. 2022, 10(1), 35-42
DOI: 10.12691/JAEM-10-1-4
Original Research

The Origin of the Time Scale: A Crucial Issue for Predictive Microbiology

Alberto Schiraldi1,

1Formerly at the Department Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy

Pub. Date: October 13, 2022

Cite this paper

Alberto Schiraldi. The Origin of the Time Scale: A Crucial Issue for Predictive Microbiology. Journal of Applied & Environmental Microbiology. 2022; 10(1):35-42. doi: 10.12691/JAEM-10-1-4

Abstract

The collective behavior of microbial cells in a batch culture is the result of interactions among individuals and effects of the surrounding medium, which changes during the growth progress. A semi empirical model skips biological and physiological peculiarities of the microorganisms and focuses on the observed sigmoid shape of the growth curve that is a common feature of batch cultures of pro- and eukaryotic microorganisms. The model replaces the observed growth trend with the behavior of an ideal batch culture that undergoes an unperturbed duplication process. It leads one to recognize that: • the origin of the time scale for the microbes, θ, differs from that of the observer, t; • the absolute reference state for any batch culture is log (N) = 0 (no matter the log base) for θ = 0; • the cell duplication occurs after an active latency gap, θ0, that decreases with increasing inoculum population, log2(N0) and increasing temperature; • θ0 substantially differs from the lag phase, λ, considered by most authors; • the use of reduced variables allows gathering different growth curves in a single master plot; • the model applies to batch cultures which undergo change of the environmental conditions and predicts the width of the intermediate latency gap just after the change; • the expression for the decay trend of the microbial population allows definition of a parameter suitable to rank the effects of bactericidal drugs. The model justifies the demand of more restricted safety limits of microbial loads.

Keywords

predictive model, batch cultures, latency gap, time scale

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Zwietering, M. H., Jongenburger I., Rombouts F. M., van't Riet, K. 1990. Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56, 1875-1881.
 
[2]  Baranyi, J., Roberts, T. A. 1994. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23, 277-294.
 
[3]  Baranyi, J., Roberts, T. A. 1995. Mathematics of predictive food microbiology. Int. J. Food Microbiol. 26, 199-218.
 
[4]  Baranyi, J. 1998. Comparison of stochastic and deterministic concepts of bacterial lag. J. Theor. Biol., 192, 403-408.
 
[5]  Baranyi, J., Pin, C. 2001. A parallel study on bacterial growth and inactivation. J. Theor. Biol., 210, 327-336.
 
[6]  Whiting, R.C., Bagi, L.K. 2002. Modeling the lag phase of Listeria monocytogenes. Int. J. Food Microbiol., 73, 291-295.
 
[7]  Swinnen, I.A.M., Bernaerts, K., Dens, E.J.J., Geeraerd, A.H., Van Impe, J.F. 2004. Predictive modelling of the microbial lag phase: a review. Int. J. Food Microbiol., 94, 137-159.
 
[8]  Kutalik, Z., Razaz, M., Baranyi, J. 2005. Connection between stochastic and deterministic modelling of microbial growth. J. Theor. Biol., 232, 285-299.
 
[9]  Neidhardt F. C. 1999. “Bacterial growth: constant obsession with dN/dt,” Journal of Bacteriology, vol. 181, no. 24, pp. 7405-7408.
 
[10]  Yates, G. T. and Smotzer, T. 2007. On the lag phase and initial decline of microbial growth curves. J. Theor. Biol., 244, 511-517.
 
[11]  Baranyi, J., George, S.M., Kutalik, Z. 2009. Parameter estimation for the distribution of single cell lag times. J. Theor. Biol., 259, 24-30.
 
[12]  Bertrand, R. L. 2019. Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J. Bacteriol., 201 (7) 1-21.
 
[13]  Ziv, N., Brandt, N.J., Gresham, D. The Use of Chemostats in Microbial Systems Biology. J. Vis. Exp., 80 (2013) e50168.
 
[14]  A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini and M. Viale, Scale-free correlations in starling flocks, PNAS, 107, 26 (2010) 11865-11870. Supporting Information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1005766107/-/DCSupplemental.
 
[15]  M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, PNAS , 105, 29 (2008) 1232-1237.
 
[16]  D. Gonze, K. Z Coyte, L. Lahti and K. Faust, Microbial communities as dynamical systems, Curr. Opinion Microbiol., 44 (2018) 41-49.
 
[17]  S.López, M. Prieto, J. Dijkstra, M.S.Dhanoa and J. France Statistical evaluation of mathematical models for microbial growth, Int. J. Food Microbiol., 96 (2004) 289-300.
 
[18]  A. Schiraldi, Microbial growth in planktonic conditions, Cell Develop. Biol., 6 (2) (2017) 185.
 
[19]  Schiraldi A.2017. “A self-consistent approach to the lag phase of planktonic microbial cultures,” Single Cell Biology, vol. 6, no. 3, p. 3.
 
[20]  Schiraldi A. 2020. Growth and decay of a planktonic microbial culture. Int. J. Microbiology, Article ID 4186468.
 
[21]  Schiraldi A., Foschino R. 2021. An alternative model to infer the growth of psychrotrophic pathogenic bacteria. J. Appl. Microbiol., and related “Supporting Information”.
 
[22]  Schiraldi A. Foschino R. 2021. Time scale of the growth progress in bacterial cultures: a self-consistent choice. RAS Microbiology and Infectious Diseases, 1(3) 1-8.
 
[23]  A. Schiraldi, Batch Microbial Cultures: A Model that can account for Environment Changes, Adv. Microbiol., 11 (2021) 630-645.
 
[24]  M. Deforet, D. van Ditmarsch, and J. B. Xavier, Cell-Size Homeostasis and the Incremental Rule in a Bacterial Pathogen, Biophys. Journal, 109 (2015) 521-528.
 
[25]  M. Schaechter, From growth physiology to system biology, Int. Microbiol., 9 (2006) 157-161.
 
[26]  Tyrer H, Ainsworth P, Ibanŏglu S, Bozkurt H (2004) Modelling the growth of Pseudomonas fluorescens and Candida sake in ready-to-eat meals. J Food Eng 65: 137-143.
 
[27]  E.J. Dens, K. Bernaerts, A.R. Standaert, J.F. Van Impe. Cell division theory and individual-based modeling of microbial lag Part I. The theory of cell division. Int. J. Food Microbiol., 101 (2005) 303-318.
 
[28]  E.J. Densa, K. Bernaertsa, A.R. Standaerta, J.-U. Kreftb, c,1, J.F. Van Impe. Cell division theory and individual-based modeling of microbial lag Part II. Modeling lag phenomena induced by temperature shifts. J. Food Microbiol., 101 (2005) 319-332.
 
[29]  I.A.M. Swinnen, K. Bernaerts, K. Gysemans, J.F. Van Impe. Quantifying microbial lag phenomena due to a sudden rise in temperature: a systematic macroscopic study. Int. J. Food Microbiol., 100 (2005) 85-96.
 
[30]  Egli T., Microbial growth and physiology: a call for better craftsmanship, Frontiers in Microbiology, 6, 287 (2015) 1-12.
 
[31]  K. Koutsoumanis, Predictive Modeling of the Shelf Life of Fish under Non isothermal Conditions, Appl. Environ.l Microbiol., 67 (2001) 1821-29. 2001.
 
[32]  R.J. Leiphart, D. Chen, A.P. Peredo, A. E. Loneker, P.A. Janmey, Mechanosensing at Cellular Interfaces, Langmuir, 35 (2019) 7509-7519.
 
[33]  V. Antolinos, M. Muñoz-Cuevas, M. Ros-Chumillas, P.M. Periago, P.S. Fernández, Y. Le Marc. Modelling the effects of temperature and osmotic shifts on the growth kinetics of Bacillus weihenstephanensis in broth and food products. Int. J. Food Microbiol., 158 (2012) 36-41.
 
[34]  I.A. Taub, F.E. Feeherry, E.W. Ross, K. Kustin, and C.J. Doona. A Quasi-Chemical Kinetics Model for the Growth and Death of Staphylococcus aureus in Intermediate Moisture Bread. J Food Sci., 68(8) (2003) 2530-37.
 
[35]  C.J. Doona, F.E. Feeherry, E.W. Ross. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing. Int. J. Food Microbiol., 100 (2005) 21-32.